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Spectral-Domain Computation of Characteristic
Impedances and Multiport Parameters of
Multiple Coupled Microstrip Lines

VIJAI K. TRIPATHI, SENIOR MEMBER, IEEE, AND HYUCKIJAE LEE, MEMBER, IEEE

Abstract —The numerical procedure based on the spectral-domain tech-
niques is formulated to compute all the frequency-dependent normal-mode
parameters of general multiple coupled line structures in an inhomoge-
neous medium. In addition to the phase and attenuation constants for all
the normal modes; these parameters-include the line-mode and decoupled
line modal impedances and the current and equivalent voltage eigenvector
matrices of the coupled system. The multiport admittance (and impedance)
matrices and coupled line equivalent circuit model parameters are evalu-
ated in terms of these normal-mode parameters. Numerical results for
these normal-mode parameters for typical asymmetric two-, three-, and
four-line microstrip structures are included to demonstrate the procedure
and the frequency dependence of these parameters.

I. INTRODUCTION

CONSIDERABLE amount of work has been done

in recent years on the computation of the propaga-
tion characteristics of multiple coupled strips on a single
substrate as well as in a layered medium including lossy
and anisotropic medium (e.g., [1]-{12]). The propagation
constants for these structures have been computed in the
past by using the rigorous full-wave analysis [2]-[7]. How-
ever, works reporting on other design parameters such as
characteristic impedance eigenvector matrices and the mul-
tiport network functions and equivalent circuit models
have been confined primarily to the quasi-TEM analysis
1), [81-112).

Quasi-TEM structures are completely characterized for
their properties in terms of all the self and mutual line
constants (equivalent series impedance and shunt admit-
tances per unit length) of the structure. For the lossless
case consisting of N lines, these are the NxN inductance
and the capacitance matrices. For the general lossy case,
the N X N equivalent impedance and admittance matrices
are symmetrical for passive systems and consist of
N(N +1)/2 independent entries which depend on the
structure configuration and geometry. That is, for a gen-
eral N-line distributed parameter structure, N(N +1) in-
dependent variables are needed to completely characterize
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the system. The general coupled line analysis leads to
N(N +1) independent normal-mode parameters which are
required to study the circuit properties of the system. This
number is reduced for special situations encountered for
various structures such as physical symmetry or medium
homogeneity., For example, the number is reduced by
2(N —1) for structures having physical symmetry and by
N —1 for homogeneous systems where all the eigenvalues
are degenerate. :

The evaluation of the frequency- and time-domain re-
sponse is facilitated by the derivation of the network
functions (e.g., impedance, admittance, or scattering pa-
rameters) or the exact equivalent circuit models based on
the properties of the structures. These network functions
and equivalent circuit models have been derived in terms
of the normal-mode parameters of the coupled line struc-
ture [8]-[15] for the quasi-TEM case and can be evaluated
for the dynamic case based on the results obtained by the
spectral domain or other full-wave techniques.

In this paper, starting from the known spectral-domain
Green’s function interrelating the strip currents and result-
ing electric fields [16]-]18], the procedure to compute all
the frequency-dependent normal-mode parameters of a
general multiple coupled strip structure in a layered
medium is presented. Propagation constants (including
attenuation constants), current and equivalent-voltage
eigenvector components, line-mode impedances, and de-
coupled characteristic modal impedances are computed for
typical multiple coupled line structures. These frequency-
dependent normal-mode parameters are used to compute
the 2N port network functions and equivalent circuit
models used in the frequency and time-domain analysis
and design of multiple coupled line circuits such as filters,
couplers, and VLSI single and multilevel interconnections.

II. THEORETICAL FOERMULATION

The numerical technique used to compute the phase
constants for the dominant hybrid modes is well known
and documented as the spectral-domain technique (e.g.,
[16]-[18]) and is not repeated here. The propagation con-
stants are evaluated by applying the Galerkin method to
the transformed Green’s function matrix relating the cur-
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Fig. 1. (a) Cross section of multiple coupled microstrips. (b) Schematic
: of the multiple N coupled line 2N port.

rents and electric fields at various boundaries of the struc-
ture and solving for the roots of the determinant (e.g.,
[16]-[18]). For example, for a single-layer multiple strip
structure (Fig. 1), the tangential components of the electric
field at the interface are related to the surface currents by
the Green’s dyadic called the impedance matrix [18]. Ex-
pansion of surface currents in a set of basis functions and
imposition of the condition that the tangential electric
fields must be zero on the strips leads to a determinantal
equation for unknown eigenvalues 8. We have used
Chebychev functions of first and second kind with edge
terms for the basis functions to expand the longitudinal
and transverse components of strip currents. That is, at a
given interface the two components of surface currents are
expanded as =

e o]
JZ = Z AanZ
n=0
and
m=1‘
i=N

T,(X)

an(x) = ~§0An1 /1—X-2 ’
T (X) = l.=§0 Bl 1(X)-y (1_ X7),

n=0,1,2---

m=1,2,3-

()

where
. 2
‘Xi=Wi{x——xi}

with W, being the width of the ith strip and x, is the
distance from origin to the center of the strip. In the
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transformed domain these currents are the well-behaved
cylindrical Bessel functions which are readily calculated.

For each orthogonal normal mode the current distribu-
tion, the total strip current for each strip, and the resulting
normalized electric and magnetic fields are computed in
terms of the corresponding eigenvalue or the phase con-
stant. These are used to compute the attenuation constant
due to conductor and dielectric losses in a manner similar
to the one used for single and symmetrical coupled lines
[17]. The attenuation constant for each mode due to con-
ductor and dielectric losses is computed from

Rs/IHt|2dZ
[ S ’

" 2Re [[(EH} ~ EH} ) dS

B =R, formode m (4a)

Toe tand, [[(|E +|E° +|E,2) ds,

o, = 4b
‘ (4b)
2Re [[(E.H} - E H}) ds

where R is the surface resistance, H, is the tangential
magnetic field at the conductor surface, and subscript i
represents the ith dielectric layer having a dielectric con-
stant €; and loss tangent tané,. '

A. The Current Eigenvector Matrix and the
Characteristic Impedances

The normalized current eigenvector matrix [M,] and the
characteristic impedances of the multiple coupled structure
are also computed by using the solutions for the currents
and field distribution associated with each mode.

The normalized current on each line for each mode
represents the component of the current eigenvector, m,,,,
for that mode and is calculated by integrating the current
distribution for each strip. That is, '

m,m:f.fzdx for=4,, I,m=1,2,---N (5)
W,

with

(m12m+m%m+m%m+'«”m]2\7m)=17 m=1727N

(6)
An equivalent voltage eigenvector matrix can also be

defined by utilizing the orthogonality between the current
and the voltage eigenvectors [9], [11] and is given by

[M,]=[[m]7]" (7)

The elements of the equivalent voltage eigenvector corre-
sponds to an equivalent line voltage associated with a

given mode defined such that
le =1/2[RC { VlmIlﬂ;n }] -

(8)

V). is the normalized voltage on line / for mode m at low
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Fig. 2. Frequency-dependent normal-mode parameters of an asymmet-
ric two-line structure. H =0.635 mm, H,=20 mm, W, =0.6 mm,
W, =12 mm, §=0.3 mm, ¢, =9.80.

frequencies when quasi-TEM approximation is valid and a
unique line voltage can be defined. Otherwise it may be
considered as an equivalent voltage which leads to the
same value for the power associated with line / for mode m
as obtained by the integration of the associated Poynting
vector.

Both line-mode and decoupled normal-mode impedances
have been used in the past to calculate the frequency- and
time-domain characteristics of the multiports [8], [9], [11],
{13], [14]. The elements of line-mode impedance matrix z,,,
are the characteristic impedances of line / for mode m.
The lines must be terminated in these impedances in order
to match all the lines when the given mode m is excited.
These impedances have been used to evaluate the multi-
port impedances (admittances) and other parameters as
demonstrated for asymmetric two- and symmetrical three-
line structures in [19] and [20] in a closed form. In general,
the multiport functions are computed by using the general
solutions in a matrix form in terms of all the normal-mode
parameters as shown in [8], [9], [11], and [12] for the
quasi-TEM case. The decoupled modal impedance matrix
[Z]. is diagonal and has been used in equivalent circuit
representation of the coupled line system [8], [14].

It is seen that the line-mode impedance can be evaluated
for all the hybrid modes in a straightforward manner by
calculating the power associated with a given line for a
given mode and the corresponding line current. We have
formulated these impedances in terms of the now accepted
power—current definition of the characteristic impedance
of microstrip-like structures in an inhomogeneous medium,
e.g., the line-mode impedances are given by

power associated with line / for mode m( = P,,)

Z —
™ (normalized current in line / for mode m)*( = I2,)
(9)

where P, is calculated by integrating the Poynting vector
over the total cross section when the current distribution
on line / corresponds to the solution for currents when
B =38, and all the other line currents are zero. The total
power associated with mode m is then the sum of power
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Fig. 3. Normal-mode parameters of a symmetrical three-line structure.
H=200pm, W, =W, =W;=150 pm, S; = S, =150 pm, €, =12.9.

associated with each line for that mode. That is,

Ptotal,m=P1m+P2m+P3m+ '”PNm’

I,m=1,2,3,---N (10)

—Re f [(E.HF—~EHx)ds. (1)

B. The Multiport Parameters and the Equivalent Multiple
Coupled Line System

The coupled line multiport can now be analyzed for its
frequency- and time-domain characteristics by using either
the complex network functions or the equivalent circuit
consisting of uncoupled lines and decoupling and coupling
transformer banks for the dependent sources [8], [11].

The admittance, impedance, and scattering parameters
can be computed for the structure by utilizing the expres-
sions for these parameters in terms of the normal-mode
parameters. For example, the admittance matrix for the
2N port is given by [13], [14]

[Y.]
[Y,]

(Y]

(1= [v.]

(12)
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Fig. 4. Frequency-dependent normal-mode parameters of a general three-line structure. H=0.635 mm, H,=20 mm,

W; =03 mm, §;,=0.2 mm, W, =

0.6 mm, S, =04 mm, W;=1.2 mm, ¢, =9.8. (a) Effective dielectric constants for the

three modes. (b) Equivalent voltage eigenvector matrix elements. The three eigenvectors ae [1, R a2s R 31 [1, Rpa, Rps)l, and
[1, Reas Resl- (©) Line-mode impedances Z;; with i= A4, B, C and j=1,2,3.

with

T

[Y.]=[%,.]* [MV][COth(Yil)]diag[M

and

[Y,]=1[7,,]* [MV][CSCh(Yil)]diag[Ml]T-

In the above equations a product matrix has been de-
fined [14] in accordance with the definition that for [C] =
[A]#][B] the elements of matrix [C] are the product of the
corresponding terms of the two matrices [ A] and [ B]. That
is, ¢;;= a;;b;;. The above submatrices [Y,] and [Y,] have
also been expressed in terms of the diagonal modal admit-
tance (impedance) matrix [11], [12] and are given by

[Ya] = [MV]T[Yc]diag[COth(Yil)]diag[MI]T

and

(13)
[v,]= [MV]T[Yc]diag [CSCh(Yil)]diag[MI]T-

It should be noted that an equivalent multiple coupled
transmission-line system having distributed self and mu-
tual series impedances and shunt admittances can also be
defined in order to model the coupled lossy dispersive
system and the resulting multiport circuit. For the lossless
N line case (Fig. 1(b)) the system is defined in general by
two N X N frequency-dependent equivalent capacitance
and inductance matrices which are symmetrical. The con-
ductor and dielectric losses are represented by frequency-
dependent series resistance and shunt conductance, respec-
tively, of this equivalent transmission line system. For
example, for the lossless case the N X N equivalent induc-

tance and capacitance matrices are found by expressing
the eigenvalues, eigenvectors, and line-mode impedances
derived in terms of the [L] and [C] matrices [8], [9], [11]
and solving for the [ L] and [C] matrices. The solution for
the equivalent [ L] and [C] matrices is found to be

[L]equivalent = [MI] * [Zlm][:gm]diag[ZMI]_l

and

(14)
[C]equwalent [M] [Ylm][ﬁm]diag[MV]ml-

The above expressions have been verified by comparing
the matrix elements with those obtained directly from a
quasi-TEM program at low frequencies for a three- and a
four-line system [21], [22]. At low frequencies the values
obtained are the same as the ones obtalned by using the
quasi-TEM techniques.

III.

A computer program has been written to evaluate all the
normal-mode parameters and the multiport network func-
tions of general coupled microstrips in accordance with the
procedure outlined in the previous section.

The accuracy of the computer program was checked by
comparing the results obtained by this program with known
frequency-dependent results for single and symmetrical
coupled strips [17] and quasi-TEM results for general
multiple strip cases at low frequencies [21], [22]. The
computer program has been used on personal computers
including IBM AT’s as well as larger machines including
VAX 780. It is seen that the choice of Chebychev polyno-
mial$ for basis functions results in rapid convergence and
only two terms for J, and one term for J, result in
reasonably accurate results unless the lines are very tightly
coupled, in which case more terms are required. The CPU
time depends on the structure configuration including the

NUMERICAL RESULTS
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Fig. 5. Frequency-dependent normal-mode parameters of a symmetrical four-line structure. H =0.635 mm, H, = 50 mm,
W, =0.6 mm, $; =03 mm, W, =03 mm, S, =02 mm, ¥ =0.3 mm, S$; =03 mm, W, =0.6 mm, ¢, =9.8. (a) Effective
dielectric constants for the four normal modes. (b) Attenuation. constants due to conductor less for the four modes. (c)
Equivalent mode voltage ratios. The four eigenvectors for this case are defined in the text. (d) Line-mode impedances.

Z,=2Z, and Z, = Z, for all modes due to symmetry.

number of lines and the machine used for computations
and may range from a few seconds to a few minutes.
Figs. 2 and 3 show the effective dielectric constants,
impedarices, and equivalent mode voltage ratios for typical
asymmetric two-line and symmetric three-line structures.
For these two cases, closed-form expressions for the four-
and six-port admittances (impedances), respectively, have
been derived in terms of normal-mode parameters and the
equivalent self and mutual line constants of the system
[19], {20]. For the asymmetric two-line case, ¢ and 7 refer
to the two normal modes, and R, and R, are the mode

voltage ratios. Their definitions and the expressions for the -

four-port impedance and admittance matrix in terms of

these parameters are given in [19]. For the symmetrical
three-line structure 4, B, and C refer to the three normal
modes and the equivalent voltage eigenvectors are [1, R ,,1],
[1,0, —1], and [1, R,1]. The expressions for the six-port
impedance or admittance matrix in terms of these normal-
mode parameters are givén in [20].

Results for a general three-line and a symmetric four-line
structure are shown in Figs. 4 and 5 to demonstrate the
behavior of all the normal-mode parameters as a function
of frequency. For the three-line structure, even though
three eigenvalues, six mode voltage ratios representing the
eigenvector matrix, and nine impedances are plotted as a
function of frequency, only three-line mode impedances
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are independent (e.g., Z,, Zyp, and Z, for line 1 for the .

three modes) and the others can be derived from these by
using the orthogonality between the voltage and the cur-
rent eigenvector for a given mode. The general three-line
system has 12 independent normal-mode parameters re-
quired for the analysis and design of the six port.

The symmetrical four-line structure with W, = w,, W, =
W;, and S;=S§; resultsin Z,,=Z,, and Z,,=Z, . and
an equivalent voltage eigenvector matrix as given by

1 1 1 1

[MV]= _21 :ﬁz _23 24
1 2 3 4

-1 1 -1 1

Note that for this case the number of independent
equivalent line constants or normal-mode parameters is 14
because of symmetry. This number would be 20 for a
general four-line structure without symmetry.

IV. CONCLUDING REMARKS

In conclusion, the full-wave spectral-domain technique
for the computation of all the frequency-dependent nor-
mal-mode parameters and the resulting multiport network
functions for general multiple coupled inhomogeneous
transmission lines has been presented. Even though the
paper deals primarily with coupled microstrips, the proce-
dure presented is a general one and can be applied {o other
coupled propagation structures such as coupled slots, fin
lines, and dielectric waveguides. The results for all the
frequency-dependent propagation characteristics including
multiport terminal parameters should be quite useful in
the analysis and design of multiple coupled line structures
such as couplers, filters, and transformers at higher fre-
quencies where the effects of losses and dispersion become
significant,
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